翻訳と辞書
Words near each other
・ Hyponerita brueckneri
・ Hyponerita hamoia
・ Hyponerita incerta
・ Hyponerita ishima
・ Hyponerita lavinia
・ Hyponerita parallela
・ Hyponerita pinon
・ Hyponerita rhodocraspis
・ Hyponerita rosaceata
・ Hyponerita similis
・ Hyponerita tipolis
・ Hyponeuma
・ Hyponitrite
・ Hyponitrite reductase
・ Hyponitrous acid
Hyponormal operator
・ Hyponychium
・ Hyponymy and hypernymy
・ Hypopacha
・ Hypopachus
・ Hypopachus barberi
・ Hypopachus pictiventris
・ Hypopalpis
・ Hypoparathyroidism
・ Hypoperigea
・ Hypoperigea tonsa
・ Hypopetalia pestilens
・ Hypophalangism
・ Hypopharyngeal cancer
・ Hypopharyngeal eminence


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hyponormal operator : ウィキペディア英語版
Hyponormal operator
In mathematics, especially operator theory, a hyponormal operator is a generalization of a normal operator. In general, a bounded linear operator ''T'' on a complex Hilbert space ''H'' is said to be ''p''-hyponormal (0 < p \le 1) if:
:(T^
*T)^p \ge (TT^
*)^p
(That is to say, (T^
*T)^p - (TT^
*)^p is a positive operator.) If p = 1, then ''T'' is called a hyponormal operator. If p = 1/2, then ''T'' is called a semi-hyponormal operator. Moreoever, ''T'' is said to be log-hyponormal if it is invertible and
:\log (T^
*T) \ge \log (TT^
*).
An invertible ''p''-hyponormal operator is log-hyponormal. On the other hand, not every log-hyponormal is ''p''-hyponormal.
The class of semi-hyponormal operators was introduced by Xia, and the class of p-hyponormal operators was studied by Aluthge, who used what is today called the Aluthge transformation.
Every subnormal operator (in particular, a normal operator) is hyponormal, and every hyponormal operator is a paranormal convexoid operator. Not every paranormal operator is, however, hyponormal.

== See also ==

*Putnam’s inequality

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hyponormal operator」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.